Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus.
نویسندگان
چکیده
We reported previously that an efficient efflux system for benzylpenicillin (PCG) is located on the choroid plexus (CP). In this study, we investigated the involvement of rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8) in the uptake of PCG and p-aminohippurate (PAH) by the CP. Western blot analysis indicates the expression of rOat3, but not rOat1, on the CP, and immunohistochemical staining shows that rOat3 is localized on the brush border membrane of the choroid epithelial cells. PCG and PAH were found to be taken up by isolated rat CP, with K(m) values of 111 and 354 microM, respectively. A mutual inhibition study suggests that the same transporter is responsible for the uptake of PCG and PAH by isolated rat CP. This was confirmed by examining the effect of organic anions and cimetidine on their uptake. Estradiol-17beta-glucuronide and cimetidine were found to be selective inhibitors of rOat3. The inhibition constants of the inhibitors including estradiol-17beta-glucuronide and cimetidine were comparable for the uptake of PAH and PCG by isolated rat CP. In addition, these values were also comparable with those for rOat3, but not with those for rOat1. These results suggest that rOat3 is mainly responsible for the uptake of PCG and PAH by isolated rat CP, and it functions as one of the detoxification systems on the CP by removing its substrates from the cerebrospinal fluid.
منابع مشابه
Carrier-mediated uptake of H2-receptor antagonists by the rat choroid plexus: involvement of rat organic anion transporter 3.
The choroid plexus (CP) acts as a site for the elimination of xenobiotic organic compounds from the cerebrospinal fluid (CSF). The purpose of the present study is to investigate the role of rat organic anion transporter 3 (rOat3; Slc22a8) in the uptake of H(2)-receptor antagonists (cimetidine, ranitidine, and famotidine) by the isolated rat CP. Saturable uptake of cimetidine and ranitidine was ...
متن کاملConstitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats.
The aim of this study was to quantitatively determine the constitutive expression levels of various transporter mRNAs in rat choroid plexus. To provide a reference for the relative expression levels, the expression of various transporter mRNAs in choroid plexus were compared with that in liver, kidney, and ileum. The mRNA levels of multidrug resistance protein (Mrp)1, 2, 3, 4, 5, and 6; multidr...
متن کاملThe renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules.
The renal secretion of organic anions across the proximal tubules is achieved by a coordination of uptake and efflux transporters. This study reports the expression, localization, and functional properties of mouse renal-specific transporter (RST). Mouse RST mRNA is predominantly expressed in the kidney and localized on the brush border membrane of mouse kidney proximal tubules. Mouse RST-expre...
متن کاملFunctional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions.
Our previous kinetic analyses have shown that the transporter responsible for the renal uptake of pravastatin, an HMG-CoA reductase inhibitor, differs from that involved in its hepatic uptake. Although organic anion transporting polypeptides are now known to be responsible for the hepatic uptake of pravastatin, the renal uptake mechanism has not been clarified yet. In the present study, the inv...
متن کاملOrganic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice.
The choroid plexus actively transports endogenous, xenobiotic, and therapeutic compounds from cerebrospinal fluid to blood, thereby limiting their exposure to the central nervous system (CNS). Establishing the mechanisms responsible for this transport is critical to our understanding of basic choroid plexus physiology and will likely impact drug targeting to the CNS. We recently generated an or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 61 5 شماره
صفحات -
تاریخ انتشار 2002